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1. INTRODUCTION

We consider a quintic spline-on-spline technique for approximating the
second (or higher order) derivative of a function from its values on a
uniform partition of 1= [0, 1] with knots Xi = ih, i =0(1 )n. For a cubic
spline, there is computational evidence that a cubic spline-on-spline inter­
polation gives excellent results for the second derivative of sin X ([1J).
Dolezal and Tewarson [2J obtained error bounds for the interpolation,
and we derived asymptotic expansions of the errors in the second and third
derivatives ([6J). Let s be an interpolatory cubic spline of a sufficiently
smooth function I and let p be a cubic spline-on-spline interpolant of the
derivative of s. Then we have under appropriate end conditions,

(1)

where Ilk) = j<k)(ih) and slk) =s(k)(ih) ([6J).
The object of this paper is to derive analogous asymptotic error

estimates for the quintic spline-on-spline interpolation. Let us denote an
interpolating quintic spline to I by s and a quintic spline-an-spline inter­
polant of s' by p:

(i) Si=/;'

(ii) Pi=S;,

i = O(l)n

i = 0(1 In.
(2)

In Section 3, we shall prove the following asymptotic expansions of the
errors under end conditions (20):

(i) I;' - S;' = -(h4/720)fl6) + .
(ii) I;' - p; = -(h6/2520)/l 8 ) + .
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(3)
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By means of the asymptotic expansion 3(i), Richardson type
extrapolation is used to get an O(h6

) second derivative estimate without
using the quintic spline-on-spline technique:

J:' - (1/15){ 16s;:dxJ - s;:(xJ} = -(h6/67200)fj8) + ... (4)

for any mesh point Xi bounded away from the endpoints where Sh(X) and
Sh/2(X) are quintic spline interpolations to f with uniform mesh sizes hand
h/2, respectively ([7] ).

On the other hand, by 3(ii) we have

(5)

where Ph/2(X) is a quintic spline-on-spline interpolation to f with uniform
mesh size h/2.

Since 67200/161280 = 5/12, spline-on-spline technique yields better
estimate than extrapolation. As for computational effort, we may have the
following result. In extrapolation method, we have to solve two linear
systems of order nand 2n to determine Sh and Sh/2, respectively. In spline­
on-spline technique, the coefficient matrices for determining Sh/2 and Ph/2
are exactly the same, and so Ph/2 is easily determined with little additional
effort.

Hence we may have a justification for using the quintic spline-on-spline
technique instead of extrapolation method.

In the last section some numerical results are given.

2. SOME LEMMAS

In the present paper we consider end conditions of the form:

S(4) +,.. S(4) + {3 S(4) - Co "'I 1 1 2 - 0'

S~4) + 1X2S~42 1 + {32s~42 2 = Cn ,

S~4) + 'l'2S~421 + b2S~422 + lhs~4~ 3 =Cn -I·

Let 0 and K (101 > 1K\ > 1) be the solutions of the quartix polynomial:
x 4+26x3+66x2+26x+l::::O, and Pi(x)=1+cxix+{3ix2 and qi(X)=
1 +'l'ix+biX2+'7iX3. In what follows, for any finite dimensional vector and
matrix, let us denote their maximum norms by 1·1. Now we shall prove the
following two lemmas.

LEMMA 1. IfPi(l/O) qi(l/K) - p;(I/K) qi(I/8),to 0, i = 1,2, the following n
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by n matrix An of band-width five is nonsingular for sufficiently large nand
in addition

where C is a generic constant independent of nand

1 ill PI

1 YI °1 '11

1 26 66 26

A =n

26 66 26 1

'12 02 Y2 1
/32 il2 1

Proof Let us consider a linear system:

An+I~=A

where ~ = (~o, ~I"'" ~nf and A= (Ao, A/>..., An)T.

66~2+26~3+~4=A2-26~1-~o

26~2+ 66~3+ 26~4+ ~ 5 = A3- ~ I

~i-2+26~i-l +66~i+26~i+l +~i+2=Ai

i =4(I)n - 4

26~n - 2+ 66~n - 3+ 26~n - 4+ ~n - 5 = An - 3- ~n - 1

66~n_2 + 26~n_3 + ~n-4 =An-2 - 26~n_l - ~n'

(6)

(7)

(8)

Let D = (di,j' 2:;;;. i, j:;;;' n - 2) be the inverse of the above diagonally
dominant coefficient matrix. Then we have

n-2
'~i= L di,jAj-di,i26~1 +~o)-di,3~1

j=2

- di,n - 3~n- 1- di,n- 2(26~n_ 1 + ~n)

i= 2(l)n - 2.

(9)

Here we shall require the following properties of the coefficient matrix D:

n-2
(i) I Idi,jl:;;;. 1/12,

j=2
i= 2(I)n-2 ([1])



320 MANABU SAKAI

(ii) d2,2 = l/(OK) + O(IKI-n),

d3,2 = 1/(OK)( 1/0 + l/K) + O( IKI-n), (10)

d3,3 = - {1/02+ 1/(OK) + 1/K2+ 26/(OK)( 1/0 + l/K)} + O( IKI-n)

(iii) di,2,di,3=O(IKI- i), i=2(1)n-2,

The above properties are easily obtained by solving the difference
equations, Le.,

i= 2(1)n - 2 (11 )

(12)

where coefficients (a, b, c, d) are the solutions of linear equations:

p(O)a+ p(1/0)b+ p(K)c+ p(l/K)d= 1

q(O)a + q(1/0)b + q(K)C + q(l/K)d= 0

on - 4q(1/0)a + 04- nq(O)b + Kn- 4q( l/K)c + K4- nq(K)d = 0

on-4p(1/0)a + 04-np(0)b + Kn- 4p(1/K)c + K4- np(K)d= 0

(p(x) =x2 + 26x + 66 and q(x) =x 3 + 26x2+ 66x + 26). Since "the deter­
minant of the above coefficient matrix" becomes (OKt- 4{p(1/0) q(l/K)­
p(l/K)q(1/0)}2 + ,.. =(OKt- 2(0-K)2+ ''', we have

a=O(!01-2n),

b= -l/{O(O-K)}+O(IKI-n)

C = O(IOKI-n),

and d=l/{K(O-K)}+O(IKI-n).

Using the above asymptotic estimateS';- we have

i = 2( l)n - 2. (13 )

Similarly we have

di,3= {(K+26) 01-i_(0+26) K1- i }/(0_K)

+ O(IK!-n), i=2(1)n-2. (14)

This completes the derivation of properties (lOii) and (lOiii).
Now we return to the proof of Lemma 1. Substituting ei' i = 2, 3, n - 3

and n - 2 represented by equations (9) into the first and last two equations
of (6) yields

(15)
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Here, in virtue of (10), we have

(i) Ai, i = 0, 1, n - 1 and n are some linear combinations of A.j ,

j = O( l)n such that

(ii)

(iii)

[

1 - d2,2Pi (Xi - (26d2,2 + d2,3) Pil
Ai,i= 1-d2,2(ji- d3,211i Yi-(26d2,2+ d2,3)(ji .

- (26d3,2 + d3,3) l1i

i= 1, 2.

By (lOii) and (10iii), we have

det(A i,;) = (11K - 110) -1 {Pi( 110) q;( 11K)

-Pi(1IK)Qi(110)} + '" ~O, i= 1, 2 (16)

for sufficiently large n, Hence, by (15) we have an inequality of the form

i = 0, 1, n - 1 and n. (17)

From (9), by (17) and (lOi) we have

I~I ~CIAI for sufficiently large n,

By (7), this inequality implies the nonsingularity of A n + 1 for sufficiently
large n and in addition

(18)

This completes the proof of this Lemma 1.
Similarly as in the proof of Lemma 1 we have the following lemma that

is required for the error estimates at any mesh point bounded away from
the endpoints.
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LEMMA 2 (cf. [4]). Let us denote the (i, j)-component of the inverse of
A n in Lemma 1 by (A;;- 1 ) i,J" Then we have

for sufficiently large n.

3. ASYMPTOTIC ERROR ESTIMATES

i = O(l)n (19)

Since qUIntIc splines sand p depend upon n + 5 parameters, four
additional end conditions are required toward the determination of these,
respectively. In the present paper, we take these to be homogeneous end
conditions:

(i) j'S&4) = j'+ IS&4) = V"S~4) = V"+ lS~4) = 0

(ii) LI'p&4) = LI' + lp&4) = V"p~4) = V"+ lp~4) = 0
(20)

where r = 5 or 6 or 7, LI and V' are forward and backward difference
operators, respectively. By repeated use of the consistency relation for quin­
tic spline:

(l/120)(sl~2 +26sl~ 1 +66sl4
) + 26sl~ 1 +Sl~2)

=(1/h4 )(s;+2 - 4si+ 1 + 6s;- 4S i _ 1 + Si-2), (21)

condition j'S&4) =0 (r # 4) may be rewritten as follows

(22)

where a" b, and c, are real constants and L, is some linear combination of
Sj' j =O( l)r (Table!). For example,

L6= (1/317)( 19021g2- 813g3 + 33g4 - gs) .

L 7 = (1/3840)(460801g2-19834g3 + 846g4 - 34gs+ g6)

TABLE I

a,
b,
c,

5

27
67
25

6

26
65

304/13

7

8229/317
20571/317

7363/317

8

59805/2304
149490/2304

53469/2304
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where we denote the right-hand side of (21) by g;. By (2i), (21) and (22),
we have a system of S!4), i =0(1 )n, whose coefficient matrix A n +I is almost
of band-width five:

1 ar+l br+1 Cr+l
1 ar br Cr
1 26 66 26

1 26 66
(23)

By Taylor series expansion, we have

(1/120) A n +1(e&4), e~4), ..., e~4)f

= (O(h r+1), O(hr), (h2/12)f~6) + (h4/60)f!8)

+ "', O(hr), O(hr+1 )f (24)

where

i = O(I)n.

After eliminating (1,4) and (n + 1, n - 2)-components of (24), by Lemma 1
we have

f!4) - S!4) = (h 2/12)f!6) - (h4/240)f!8)

+ O(h ffiin (6,r»), i = 0(1 )n.

Since

(i) sf' = (l/h 2)(2s; - 5s;+ 1 + 4S;+2 - s;+ 3)

+ (h2/120)(18s!4)+65s!~\ +26s!~2+S!~3)'

(ii) s; = 1/(6h)( -11s;+ 18s;+ 1 - 9S;+2 + 2si +3)

- (h 3/720)(19s!4) + 108s!~ 1 + 51s!~2 + 2s!~ 3)

we have

(25)

(26)

([3] ),

(i) f;' - s;' = -(h4/720)fJ6) + (h6/3360)f!8)

+ O(h ffiin (8,r+2»), i=O(I)n

(ii) f; - s; = -(h6/5040)f!7) + O(h ffiin(8,r+ 3»),

This completes the proof of (3i).

i=O(I)n.

(27)
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Next we shall derive (3ii). Since P is also quintic, in virtue of the con­
sistency relation and (2ii), we have

(1/120)(pj~2+26pj~1+66pj4)+26pj~l+ P~~2)

= (l/h4)(Pi+2- 4Pi+1 +6Pi- 4Pi_1 +Pi-2) (28)

= (l/h4)(s;+2 - 4s;+ 1+ 6s; -4s;_1 +S;_2)'

By means of the consistency relation for quintic spline s:

(l/h4)(s;+2 - 4s;+ 1+6s; - 4s;_1 +S;-2)

= 1/(24h)(sj~2+ 10sj~1-lOsj~l-sj~2)'

the right-hand side of (28) may be easily determined by using the already
obtained S~4), i = 0(1 )n. By (20ii) and (28), we have a system of equations of
p~4), i=O(I)n, whose coefficient matrix is exactly the same A n + 1 for deter­
mining S~4), i = 0(1 In. That is, p~4), i = O(I)n are very easily determined with
little additional effort. Similarly as for s, using again Lemma 1 yields

i = O( 1)n. (29)

Since Pi=S;, by the consistency relation (26ii) we have

P; = (1/6h)( -lIs; + 18s;+ 1 - 9S;+2 + 2s;+])

- (h 3/720)(19P!4) + 108pj~ 1 + 51p~~ 2 +2p~~ ]). (30)

By (27ii), (29) and (30), we have

f;' - p; = -(h6/2520)f~8) + O(h ffiin (8,r+ 2»),

Thus we have

i = O( 1)n. (31 )

THEOREM 1. Let sand P be quintic interpolants off and s' on a uniform
partition of I, respectively. Then we have under end conditions (20):

(i) J:' - s;' = -(h4/720)fj6) + (h6/3360)fl8)

+ O(h ffiin (8,r+2»), i=O(l)n,

(ii) f;' - P; = -(h6/2520)fj8) + O(h ffiin(8,r+ 2)), i = O(I)n.

(32)

Using Lemma 2 (i.e., Kershaw's technique in [4]), we have
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TABLE II

(f(x)=e 5x )
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o
!
1

-0.215( _4)"
-0.251( -3)
-O.302( -2)

-0.951( -6)
-0.175( -5)

0.123( -4)

-0.650( -4)
-0.422( -5)
-O.709( -3)

aWe denote -0.215 x 10-4 by -0.215( -4).

THEOREM 2. For any integer 4::::; r ::::; 6, we have

(i) f;' - s;' = -(h4/720)fj61+ O(h 6
),

(ii) f;' - p; = -(h6/2520)fj8) + O(h8),

i = 0(1 )n,

i = O(l)n

for any mesh point bounded away from the endpoints x = 0 and x = 1.

4. NUMERICAL ILLUSTRATION

The results of some numerical computational experiments are given in
Tables II and III for the functions e5x and log(1 +x). We choose (h, r) =
(1/16,7) and denote

ej(x) = f"(x) -s"(x), e2(x) = f"(x) - P~/2(X)

e3(x) = f"(x) - (1/15){ 16sZ/2(x) - s~(x)}.

From above, we have

e2W/e3W =:= 0.415

=:= 0.413

(e 5x
)

(log(1 + x))

which correspond with the predicted value 5/12 =:= 0.417.

TABLE III

(f(x) = log(l + x)

x e1(x) ez(x) e3(x)

0 0.148( -6) -0.688( -8) 0.102( -6)
I 0.139( -7) 0.726( -10) 0.176( -9)2
1 O.252( -8) 0.423( -10) -0.317( -8)
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