Asymptotic Error Estimates for Quintic Spline-on-Spline Interpolation

Manabu Sakai
Department of Mathematics, Faculty of Science, Kagoshima University, Kagoshima 890, Japan
Communicated by Oved Shisha

Received June 1, 1983; revised December 19, 1983

1. Introduction

We consider a quintic spline-on-spline technique for approximating the second (or higher order) derivative of a function from its values on a uniform partition of $I=[0,1]$ with knots $x_{i}=i h, i=0(1) n$. For a cubic spline, there is computational evidence that a cubic spline-on-spline interpolation gives excellent results for the second derivative of $\sin x$ ([1]). Dolezal and Tewarson [2] obtained error bounds for the interpolation, and we derived asymptotic expansions of the errors in the second and third derivatives ([6]). Let s be an interpolatory cubic spline of a sufficiently smooth function f and let p be a cubic spline-on-spline interpolant of the derivative of s. Then we have under appropriate end conditions,

$$
\begin{equation*}
f_{i}^{\prime \prime}-p_{i}^{\prime}=\left(h^{4} / 90\right) f_{i}^{(6)}+\cdots \tag{1}
\end{equation*}
$$

where $f_{i}^{(k)}=f^{(k)}(i h)$ and $s_{i}^{(k)}=s^{(k)}(i h)$ ([6]).
The object of this paper is to derive analogous asymptotic error estimates for the quintic spline-on-spline interpolation. Let us denote an interpolating quintic spline to f by s and a quintic spline-on-spline interpolant of s^{\prime} by p :

$$
\begin{array}{rll}
\text { (i) } & s_{i}=f_{i}, & \\
\text { (ii) } & p_{i}=s_{i}^{\prime}, & \tag{2}\\
i=0(1) n \\
\end{array}
$$

In Section 3, we shall prove the following asymptotic expansions of the errors under end conditions (20):
(i) $f_{i}^{\prime \prime}-s_{i}^{\prime \prime}=-\left(h^{4} / 720\right) f_{i}^{(6)}+\cdots$
(ii) $f_{i}^{\prime \prime}-p_{i}^{\prime}=-\left(h^{6} / 2520\right) f_{i}^{(8)}+\cdots$.

317

By means of the asymptotic expansion 3(i), Richardson type extrapolation is used to get an $O\left(h^{6}\right)$ second derivative estimate without using the quintic spline-on-spline technique:

$$
\begin{equation*}
f_{i}^{\prime \prime}-(1 / 15)\left\{16 s_{h / 2}^{\prime \prime}\left(x_{i}\right)-s_{h}^{\prime \prime}\left(x_{i}\right)\right\}=-\left(h^{6} / 67200\right) f_{i}^{(8)}+\cdots \tag{4}
\end{equation*}
$$

for any mesh point x_{i} bounded away from the endpoints where $s_{h}(x)$ and $s_{h / 2}(x)$ are quintic spline interpolations to f with uniform mesh sizes h and $h / 2$, respectively ([7]).

On the other hand, by 3(ii) we have

$$
\begin{equation*}
f_{i}^{\prime \prime}-p_{h / 2}^{\prime}\left(x_{i}\right)=-\left(h^{6} / 161280\right) f_{i}^{(8)}+\cdots \tag{5}
\end{equation*}
$$

where $p_{h / 2}(x)$ is a quintic spline-on-spline interpolation to f with uniform mesh size $h / 2$.

Since $67200 / 161280=5 / 12$, spline-on-spline technique yields better estimate than extrapolation. As for computational effort, we may have the following result. In extrapolation method, we have to solve two linear systems of order n and $2 n$ to determine s_{h} and $s_{h / 2}$, respectively. In spline-on-spline technique, the coefficient matrices for determining $s_{h / 2}$ and $p_{h / 2}$ are exactly the same, and so $p_{h / 2}$ is easily determined with little additional effort.

Hence we may have a justification for using the quintic spline-on-spline technique instead of extrapolation method.

In the last section some numerical results are given.

2. Some Lemmas

In the present paper we consider end conditions of the form:

$$
\begin{gathered}
s_{0}^{(4)}+\alpha_{1} s_{1}^{(4)}+\beta_{1} s_{2}^{(4)}=c_{0}, \quad s_{0}^{(4)}+\gamma_{1} s_{1}^{(4)}+\delta_{1} s_{2}^{(4)}+\eta_{1} s_{3}^{(4)}=c_{1} \\
s_{n}^{(4)}+\alpha_{2} s_{n-1}^{(4)}+\beta_{2} s_{n-2}^{(4)}=c_{n} \\
s_{n}^{(4)}+\gamma_{2} s_{n-1}^{(4)}+\delta_{2} s_{n-2}^{(4)}+\eta_{2} s_{n-3}^{(4)}=c_{n-1} .
\end{gathered}
$$

Let θ and $\kappa(|\theta|>|\kappa|>1)$ be the solutions of the quartix polynomial: $x^{4}+26 x^{3}+66 x^{2}+26 x+1=0$, and $p_{i}(x)=1+\alpha_{i} x+\beta_{i} x^{2}$ and $q_{i}(x)=$ $1+\gamma_{i} x+\delta_{i} x^{2}+\eta_{i} x^{3}$. In what follows, for any finite dimensional vector and matrix, let us denote their maximum norms by $|\cdot|$. Now we shall prove the following two lemmas.

Lemma 1. If $p_{i}(1 / \theta) q_{i}(1 / \kappa)-p_{i}(1 / \kappa) q_{i}(1 / \theta) \neq 0, i=1,2$, the following n
by n matrix A_{n} of band-width five is nonsingular for sufficiently large n and in addition

$$
\left|A_{n}^{-1}\right| \leqslant C
$$

where C is a generic constant independent of n and

$$
A_{n}=\left[\begin{array}{ccccccc}
1 & \alpha_{1} & \beta_{1} & & & & \tag{6}\\
1 & \gamma_{1} & \delta_{1} & \eta_{1} & & & \\
1 & 26 & 66 & 26 & 1 & & \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & 1 & 26 & 66 & 26 & 1 \\
& & & \eta_{2} & \delta_{2} & \gamma_{2} & 1 \\
& & & & \beta_{2} & \alpha_{2} & 1
\end{array}\right]
$$

Proof. Let us consider a linear system:

$$
\begin{equation*}
A_{n+1} \xi=\lambda \tag{7}
\end{equation*}
$$

where $\xi=\left(\xi_{0}, \xi_{1}, \ldots, \xi_{n}\right)^{T}$ and $\lambda=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right)^{T}$.

$$
\left\{\begin{array}{l}
66 \xi_{2}+26 \xi_{3}+\xi_{4}=\lambda_{2}-26 \xi_{1}-\xi_{0} \tag{8}\\
26 \xi_{2}+66 \xi_{3}+26 \xi_{4}+\xi_{5}=\lambda_{3}-\xi_{1} \\
\xi_{i-2}+26 \xi_{i-1}+66 \xi_{i}+26 \xi_{i+1}+\xi_{i+2}=\lambda_{i} \\
\quad i=4(1) n-4 \\
26 \xi_{n-2}+66 \xi_{n-3}+26 \xi_{n-4}+\xi_{n-5}=\lambda_{n-3}-\xi_{n-1} \\
66 \xi_{n-2}+26 \xi_{n-3}+\xi_{n-4}=\lambda_{n-2}-26 \xi_{n-1}-\xi_{n}
\end{array}\right.
$$

Let $D=\left(d_{i, j}, 2 \leqslant i, j \leqslant n-2\right)$ be the inverse of the above diagonally dominant coefficient matrix. Then we have

$$
\begin{gather*}
\xi_{i}=\sum_{j=2}^{n-2} d_{i, j} \lambda_{j}-d_{i, 2}\left(26 \xi_{1}+\xi_{0}\right)-d_{i, 3} \xi_{1} \\
-d_{i, n-3} \xi_{n-1}-d_{i, n-2}\left(26 \xi_{n-1}+\xi_{n}\right) \tag{9}\\
i=2(1) n-2 .
\end{gather*}
$$

Here we shall require the following properties of the coefficient matrix D :

$$
\begin{equation*}
\text { (i) } \sum_{j=2}^{n-2}\left|d_{i, j}\right| \leqslant 1 / 12, \quad i=2(1) n-2 \tag{1}
\end{equation*}
$$

(ii) $d_{2,2}=1 /(\theta \kappa)+O\left(|\kappa|^{-n}\right)$,

$$
\begin{equation*}
d_{3,2}=1 /(\theta \kappa)(1 / \theta+1 / \kappa)+O\left(|\kappa|^{-n}\right) \tag{10}
\end{equation*}
$$

$$
d_{3,3}=-\left\{1 / \theta^{2}+1 /(\theta \kappa)+1 / \kappa^{2}+26 /(\theta \kappa)(1 / \theta+1 / \kappa)\right\}+O\left(|\kappa|^{-n}\right)
$$

(iii) $\quad d_{i, 2}, d_{i, 3}=O\left(|\kappa|^{-i}\right), \quad i=2(1) n-2$.

The above properties are easily obtained by solving the difference equations, i.e.,

$$
\begin{equation*}
d_{i, 2}=a \theta^{i-2}+b \theta^{2-i}+c \kappa^{i-2}+d \kappa^{2-i}, \quad i=2(1) n-2 \tag{11}
\end{equation*}
$$

where coefficients (a, b, c, d) are the solutions of linear equations:

$$
\left\{\begin{array}{l}
p(\theta) a+p(1 / \theta) b+p(\kappa) c+p(1 / \kappa) d=1 \tag{12}\\
q(\theta) a+q(1 / \theta) b+q(\kappa) c+q(1 / \kappa) d=0 \\
\theta^{n-4} q(1 / \theta) a+\theta^{4-n} q(\theta) b+\kappa^{n-4} q(1 / \kappa) c+\kappa^{4-n} q(\kappa) d=0 \\
\theta^{n-4} p(1 / \theta) a+\theta^{4-n} p(\theta) b+\kappa^{n-4} p(1 / \kappa) c+\kappa^{4-n} p(\kappa) d=0
\end{array}\right.
$$

$\left(p(x)=x^{2}+26 x+66\right.$ and $\left.q(x)=x^{3}+26 x^{2}+66 x+26\right)$. Since "the determinant of the above coefficient matrix" becomes $(\theta \kappa)^{n-4}\{p(1 / \theta) q(1 / \kappa)-$ $p(1 / \kappa) q(1 / \theta)\}^{2}+\cdots=(\theta \kappa)^{n-2}(\theta-\kappa)^{2}+\cdots$, we have

$$
\begin{gathered}
a=O\left(|\theta|^{-2 n}\right), \quad c=O\left(|\theta \kappa|^{-n}\right), \\
b=-1 /\{\theta(\theta-\kappa)\}+O\left(|\kappa|^{-n}\right) \quad \text { and } \quad d=1 /\{\kappa(\theta-\kappa)\}+O\left(|\kappa|^{-n}\right) .
\end{gathered}
$$

Using the above asymptotic estimates, we have

$$
\begin{equation*}
d_{i, 2}=\left(\kappa^{1-i}-\theta^{1-i}\right) /(\theta-\kappa)+O\left(|\kappa|^{-n}\right), \quad i=2(1) n-2 \tag{13}
\end{equation*}
$$

Similarly we have

$$
\begin{align*}
d_{i, 3}= & \left\{(\kappa+26) \theta^{1-i}-(\theta+26) \kappa^{1-i}\right\} /(\theta-\kappa) \\
& +O\left(|\kappa|^{-n}\right), \quad i=2(1) n-2 . \tag{14}
\end{align*}
$$

This completes the derivation of properties (10ii) and (10iii).
Now we return to the proof of Lemma 1 . Substituting $\xi_{i}, i=2,3, n-3$ and $n-2$ represented by equations (9) into the first and last two equations of (6) yields

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \tag{15}\\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{c}
\xi_{0} \\
\xi_{1} \\
\xi_{n-1} \\
\xi_{n}
\end{array}\right]=\left[\begin{array}{c}
\bar{\lambda}_{0} \\
\bar{\lambda}_{1} \\
\bar{\lambda}_{n-1} \\
\bar{\lambda}_{n}
\end{array}\right] .
$$

Here, in virtue of (10), we have
(i) $\bar{\lambda}_{i}, i=0,1, n-1$ and n are some linear combinations of λ_{j}, $j=0(1) n$ such that

$$
\left|\bar{\lambda}_{i}\right| \leqslant C|\lambda| .
$$

(ii)

$$
A_{1,2}, A_{2,1}=O\left(|\kappa|^{-n}\right)\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] .
$$

(iii)

$$
A_{i, i}=\left[\begin{array}{lr}
1-d_{2,2} \beta_{i} & \alpha_{i}-\left(26 d_{2,2}+d_{2,3}\right) \beta_{i} \\
1-d_{2,2} \delta_{i}-d_{3,2} \eta_{i} & \gamma_{i}-\left(26 d_{2,2}+d_{2,3}\right) \delta_{i} \\
-\left(26 d_{3,2}+d_{3,3}\right) \eta_{i}
\end{array}\right] .
$$

By (10ii) and (10iii), we have

$$
\begin{align*}
\operatorname{det}\left(A_{i, i}\right)= & (1 / \kappa-1 / \theta)^{-1}\left\{p_{i}(1 / \theta) q_{i}(1 / \kappa)\right. \\
& \left.-p_{i}(1 / \kappa) q_{i}(1 / \theta)\right\}+\cdots \neq 0, \quad i=1,2 \tag{16}
\end{align*}
$$

for sufficiently large n. Hence, by (15) we have an inequality of the form

$$
\begin{equation*}
\left|\xi_{i}\right| \leqslant C|\lambda|, \quad i=0,1, n-1 \text { and } n . \tag{17}
\end{equation*}
$$

From (9), by (17) and (10i) we have

$$
|\xi| \leqslant C|\lambda| \quad \text { for sufficiently large } n \text {. }
$$

By (7), this inequality implies the nonsingularity of A_{n+1} for sufficiently large n and in addition

$$
\begin{equation*}
\left|A_{n+1}^{-1}\right| \leqslant C . \tag{18}
\end{equation*}
$$

This completes the proof of this Lemma 1.
Similarly as in the proof of Lemma 1 we have the following lemma that is required for the error estimates at any mesh point bounded away from the endpoints.

Lemma 2 (cf. [4]). Let us denote the (i,j)-component of the inverse of A_{n} in Lemma 1 by $\left(A_{n}^{-1}\right)_{i, j}$. Then we have

$$
\begin{equation*}
\left(A_{n}^{-1}\right)_{i, 0},\left(A_{n}^{-1}\right)_{i, 1}=O\left(|\kappa|^{-i}+|\kappa|^{i-n}\right), \quad i=0(1) n \tag{19}
\end{equation*}
$$

for sufficiently large n.

3. Asymptotic Error Estimates

Since quintic splines s and p depend upon $n+5$ parameters, four additional end conditions are required toward the determination of these, respectively. In the present paper, we take these to be homogeneous end conditions:

$$
\begin{align*}
& \text { (i) } \Delta^{r} s_{0}^{(4)}=\Delta^{r+1} s_{0}^{(4)}=\nabla^{r} s_{n}^{(4)}=\nabla^{r+1} s_{n}^{(4)}=0 \\
& \text { (ii) } \Delta^{r} p_{0}^{(4)}=\Delta^{r+1} p_{0}^{(4)}=\nabla^{r} p_{n}^{(4)}=\nabla^{r+1} p_{n}^{(4)}=0 \tag{20}
\end{align*}
$$

where $r=5$ or 6 or $7, \Delta$ and ∇ are forward and backward difference operators, respectively. By repeated use of the consistency relation for quintic spline:

$$
\begin{array}{r}
(1 / 120)\left(s_{i+2}^{(4)}+26 s_{i+1}^{(4)}+66 s_{i}^{(4)}+26 s_{i-1}^{(4)}+s_{i-2}^{(4)}\right) \\
=\left(1 / h^{4}\right)\left(s_{i+2}-4 s_{i+1}+6 s_{i}-4 s_{i-1}+s_{i-2}\right) \tag{21}
\end{array}
$$

condition $\Delta^{r} s_{0}^{(4)}=0(r \neq 4)$ may be rewritten as follows

$$
\begin{equation*}
s_{0}^{(4)}+a_{r} s_{1}^{(4)}+b_{r} s_{2}^{(4)}+c_{r} s_{3}^{(4)}=L_{r}\left(s_{0}, s_{1}, \ldots, s_{r}\right) \tag{22}
\end{equation*}
$$

where a_{r}, b_{r} and c_{r} are real constants and L_{r} is some linear combination of $s_{j}, j=0(1) r$ (Table I). For example,

$$
\begin{aligned}
& L_{6}=(1 / 317)\left(19021 g_{2}-813 g_{3}+33 g_{4}-g_{5}\right) \\
& L_{7}=(1 / 3840)\left(460801 g_{2}-19834 g_{3}+846 g_{4}-34 g_{5}+g_{6}\right)
\end{aligned}
$$

TABLE I

r	5	6		
a_{r}	27	26	$8229 / 317$	8
b_{r}	67	65	$20571 / 317$	$59805 / 2304$
c_{r}	25	$304 / 13$	$7363 / 317$	$149490 / 2304$

where we denote the right-hand side of (21) by g_{i}. By (2i), (21) and (22), we have a system of $s_{i}^{(4)}, i=0(1) n$, whose coefficient matrix A_{n+1} is almost of band-width five:

$$
A_{n+1}=\left[\begin{array}{ccccccc}
1 & a_{r+1} & b_{r+1} & c_{r+1} & & & \tag{23}\\
1 & a_{r} & b_{r} & c_{r} & & & \\
1 & 26 & 66 & 26 & 1 & & \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & 1 & 26 & 66 & 26 & 1 \\
& & & c_{r} & b_{r} & a_{r} & 1 \\
& & & c_{r+1} & b_{r+1} & a_{r+1} & 1
\end{array}\right]
$$

By Taylor series expansion, we have

$$
\begin{align*}
(1 / 120) & A_{n+1}\left(e_{0}^{(4)}, e_{1}^{(4)}, \ldots, e_{n}^{(4)}\right)^{T} \\
= & \left(O\left(h^{r+1}\right), O\left(h^{r}\right),\left(h^{2} / 12\right) f_{2}^{(6)}+\left(h^{4} / 60\right) f_{i}^{(8)}\right. \\
& \left.+\cdots, O\left(h^{r}\right), O\left(h^{r+1}\right)\right)^{T} \tag{24}
\end{align*}
$$

where

$$
e_{i}^{(4)}=f_{i}^{(4)}-s_{i}^{(4)}, \quad i=0(1) n
$$

After eliminating (1,4) and ($n+1, n-2$)-components of (24), by Lemma 1 we have

$$
\begin{align*}
f_{i}^{(4)}-s_{i}^{(4)}= & \left(h^{2} / 12\right) f_{i}^{(6)}-\left(h^{4} / 240\right) f_{i}^{(8)} \\
& +O\left(h^{\min (6, r)}\right), \quad i=0(1) n \tag{25}
\end{align*}
$$

Since
(i) $s_{i}^{\prime \prime}=\left(1 / h^{2}\right)\left(2 s_{i}-5 s_{i+1}+4 s_{i+2}-s_{i+3}\right)$

$$
\begin{equation*}
+\left(h^{2} / 120\right)\left(18 s_{i}^{(4)}+65 s_{i+1}^{(4)}+26 s_{i+2}^{(4)}+s_{i+3}^{(4)}\right), \tag{26}
\end{equation*}
$$

(ii) $\quad s_{i}^{\prime}=1 /(6 h)\left(-11 s_{i}+18 s_{i+1}-9 s_{i+2}+2 s_{i+3}\right)$

$$
\begin{equation*}
-\left(h^{3} / 720\right)\left(19 s_{i}^{(4)}+108 s_{i+1}^{(4)}+51 s_{i+2}^{(4)}+2 s_{i+3}^{(4)}\right) \tag{3}
\end{equation*}
$$

we have
(i) $f_{i}^{\prime \prime}-s_{i}^{\prime \prime}=-\left(h^{4} / 720\right) f_{i}^{(6)}+\left(h^{6} / 3360\right) f_{i}^{(8)}$

$$
\begin{equation*}
+O\left(h^{\min (8, r+2)}\right), \quad i=0(1) n \tag{27}
\end{equation*}
$$

(ii) $\quad f_{i}^{\prime}-s_{i}^{\prime}=-\left(h^{6} / 5040\right) f_{i}^{(7)}+O\left(h^{\min (8, r+3)}\right), \quad i=0(1) n$.

This completes the proof of (3i).

Next we shall derive (3ii). Since p is also quintic, in virtue of the consistency relation and (2ii), we have

$$
\begin{gather*}
(1 / 120)\left(p_{i+2}^{(4)}+26 p_{i+1}^{(4)}+66 p_{i}^{(4)}+26 p_{i-1}^{(4)}+p_{i-2}^{(4)}\right) \\
=\left(1 / h^{4}\right)\left(p_{i+2}-4 p_{i+1}+6 p_{i}-4 p_{i-1}+p_{i-2}\right) \tag{28}\\
=\left(1 / h^{4}\right)\left(s_{i+2}^{\prime}-4 s_{i+1}^{\prime}+6 s_{i}^{\prime}-4 s_{i-1}^{\prime}+s_{i-2}^{\prime}\right)
\end{gather*}
$$

By means of the consistency relation for quintic spline s :

$$
\begin{aligned}
& \left(1 / h^{4}\right)\left(s_{i+2}^{\prime}-4 s_{i+1}^{\prime}+6 s_{i}^{\prime}-4 s_{i-1}^{\prime}+s_{i-2}^{\prime}\right) \\
& \quad=1 /(24 h)\left(s_{i+2}^{(4)}+10 s_{i+1}^{(4)}-10 s_{i-1}^{(4)}-s_{i-2}^{(4)}\right)
\end{aligned}
$$

the right-hand side of (28) may be easily determined by using the already obtained $s_{i}^{(4)}, i=0(1) n$. By (20ii) and (28), we have a system of equations of $p_{i}^{(4)}, i=0(1) n$, whose coefficient matrix is exactly the same A_{n+1} for determining $s_{i}^{(4)}, i=0(1) n$. That is, $p_{i}^{(4)}, i=0(1) n$ are very easily determined with little additional effort. Similarly as for s, using again Lemma 1 yields

$$
\begin{equation*}
f_{i}^{(5)}-p_{i}^{(4)}=\left(h^{2} / 12\right) f_{i}^{(7)}+O\left(h^{\min (4, r-1)}\right), \quad i=0(1) n \tag{29}
\end{equation*}
$$

Since $p_{i}=s_{i}^{\prime}$, by the consistency relation (26ii) we have

$$
\begin{align*}
p_{i}^{\prime}= & (1 / 6 h)\left(-11 s_{i}^{\prime}+18 s_{i+1}^{\prime}-9 s_{i+2}^{\prime}+2 s_{i+3}^{\prime}\right) \\
& -\left(h^{3} / 720\right)\left(19 p_{i}^{(4)}+108 p_{i+1}^{(4)}+51 p_{i+2}^{(4)}+2 p_{i+3}^{(4)}\right) . \tag{30}
\end{align*}
$$

By (27ii), (29) and (30), we have

$$
\begin{equation*}
f_{i}^{\prime \prime}-p_{i}^{\prime}=-\left(h^{6} / 2520\right) f_{i}^{(8)}+O\left(h^{\min (8, r+2)}\right), \quad i=0(1) n \tag{31}
\end{equation*}
$$

Thus we have

Theorem 1. Let s and p be quintic interpolants of f and s on a uniform partition of I, respectively. Then we have under end conditions (20):
(i) $f_{i}^{\prime \prime}-s_{i}^{\prime \prime}=-\left(h^{4} / 720\right) f_{i}^{(6)}+\left(h^{6} / 3360\right) f_{i}^{(8)}$

$$
\begin{equation*}
+O\left(h^{\min (8, r+2)}\right), \quad i=0(1) n \tag{32}
\end{equation*}
$$

(ii) $f_{i}^{\prime \prime}-p_{i}^{\prime}=-\left(h^{6} / 2520\right) f_{i}^{(8)}+O\left(h^{\min (8, r+2)}\right), \quad i=0(1) n$.

Using Lemma 2 (i.e., Kershaw's technique in [4]), we have

TABLE II

$$
\left(f(x)=e^{5 x}\right)
$$

x	$e_{1}(x)$	$e_{2}(x)$	$e_{3}(x)$
0	$-0.215(-4)^{a}$	$-0.951(-6)$	$-0.650(-4)$
$\frac{1}{2}$	$-0.251(-3)$	$-0.175(-5)$	$-0.422(-5)$
1	$-0.302(-2)$	$0.123(-4)$	$-0.709(-3)$

${ }^{a}$ We denote -0.215×10^{-4} by $-0.215(-4)$.

ThEOREM 2. For any integer $4 \leqslant r \leqslant 6$, we have
(i) $f_{i}^{\prime \prime}-s_{i}^{\prime \prime}=-\left(h^{4} / 720\right) f_{i}^{(6)}+O\left(h^{6}\right), \quad i=0(1) n$,
(ii) $f_{i}^{\prime \prime}-p_{i}^{\prime}=-\left(h^{6} / 2520\right) f_{i}^{(8)}+O\left(h^{8}\right), \quad i=0(1) n$
for any mesh point bounded away from the endpoints $x=0$ and $x=1$.

4. Numerical Illustration

The results of some numerical computational experiments are given in Tables II and III for the functions $e^{5 x}$ and $\log (1+x)$. We choose $(h, r)=$ $(1 / 16,7)$ and denote

$$
\begin{gathered}
e_{1}(x)=f^{\prime \prime}(x)-s^{\prime \prime}(x), \quad e_{2}(x)=f^{\prime \prime}(x)-p_{h / 2}^{\prime}(x) \\
e_{3}(x)=f^{\prime \prime}(x)-(1 / 15)\left\{16 s_{h / 2}^{\prime \prime}(x)-s_{h}^{\prime \prime}(x)\right\}
\end{gathered}
$$

From above, we have

$$
\begin{array}{rlr}
e_{2}\left(\frac{1}{2}\right) / e_{3}\left(\frac{1}{2}\right) & \div 0.415 & \left(e^{5 x}\right) \\
& \neq 0.413 & \\
(\log (1+x))
\end{array}
$$

which correspond with the predicted value $5 / 12 \div 0.417$.

TABLE III

$$
(f(x)=\log (1+x))
$$

x	$e_{1}(x)$	$e_{2}(x)$	$e_{3}(x)$
0	$0.148(-6)$	$-0.688(-8)$	$0.102(-6)$
$\frac{1}{2}$	$0.139(-7)$	$0.726(-10)$	$0.176(-9)$
1	$0.252(-8)$	$0.423(-10)$	$-0.317(-8)$

References

1. J. Ahlberg, E. Nilson, and J. Walsh, "The Theory of Splines and Their Applications," Academic Press, New York, 1967.
2. V. Dolezal and R. Terwarson, Error bounds for spline-on-spline interpolation, J. Approx. Theory 36 (1982), 213-225.
3. W. Hoskins and G. Mcmaster, Multipoint boundary expansions for spline interpolation, in "Proceedings, Second Manitoba Conference on Numerical Mathematics," Utilitas Mathematica Publishing Incorporated, Winnipeg, 1972.
4. D. Kershaw, The orders of approximation of the first derivative of cubic spline at the knots, Math. Comp. 26 (1972), 191-198.
5. T. Lucas, Error bounds for interpolating cubic splines under various end conditions, SIAM J. Numer. Anal. 11 (1974), 569-584.
6. M. Sakai and R. Usmani, Asymptotic error estimates for spline-on-spline interpolation, submitted for publication.
7. C. Song, "On Accurate Numerical Solution of Two-Point Boundary Value Ordinary Differential Equations," Ph.D. thesis, Applied Math. Department, State University of New York, Stony Brook, 1980.
